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Abstract
We consider the semiclassical approximation to the spectral form factor
K(τ) for two-dimensional uniformly hyperbolic systems with time-reversal
symmetry, and derive the first off-diagonal correction for small τ . The result
agrees with the τ 2-term of the form factor for the GOE random matrix ensemble.

PACS numbers: 03.65.Sq, 05.45.Mt

A fundamental characteristic of quantum systems that are chaotic in their classical limit
is universality. It is observed that diverse systems behave identically when statistics of
energy levels or wavefunctions are considered, provided that they have the same symmetries.
These universal statistics agree with those of random matrix theory, i.e. with the statistics of
eigenvalues and eigenvectors of large random matrices [1]. Support for this random matrix
hypothesis comes from a large number of numerical and experimental investigations which
have been carried out on a great variety of systems [2]. However, it remains an open question to
understand the origin of this universality, and its relation to the underlying classical dynamics.

One theoretical approach by which such an understanding may be attempted is the
semiclassical method. Semiclassical approximations are asymptotically valid in the limit
h̄ → 0 where universality is expected to hold. Moreover, they directly connect quantum
properties with properties of the corresponding chaotic classical system. They have been
applied in particular to statistical distributions of the energy levels which are bilinear in the
density of states, one example being the spectral form factor K(τ). One of the successes of
the semiclassical approach has been to show that the spectral statistics do indeed agree with
the random matrix statistics in the limit of long-range correlations; specifically the correct
leading order behaviour of K(τ) as τ → 0 has been derived [3].

An extension of this result requires knowledge of correlations between different periodic
orbits [4]. The relevant mechanisms by which periodic orbits are correlated have to be
identified, and the contributions of correlated orbits to the spectral form factor have to be
evaluated. Based on an analogy with disordered systems [5] and with diffractive corrections [6]
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it has been suggested that the next term in the expansion of K(τ) for small τ originates
from ‘two-loop orbits’: orbits that have a self-intersection with small crossing angle and
neighbouring orbits without self-intersection [7]. There is strong numerical evidence that in
systems with time-reversal symmetry these orbit pairs indeed yield the next order term in
agreement with the expectation based on random matrix theory.

In the following we present a derivation of the next to leading order term in the expansion
of the spectral form factor for small τ . We evaluate analytically the contributions of the two-
loop orbits to the form factor for uniformly hyperbolic systems with time-reversal symmetry,
and we show that the result indeed agrees with random matrix theory. The calculation makes
clear the properties of classical trajectories which are responsible for the universal result.
The approach presented here has already been generalized to quantum graphs for which the
corresponding term of the form factor has also been obtained [8].

We consider the spectral form factor, which is defined as the Fourier transform of the
two-point correlation function of the density of states

K(τ) =
∫ ∞

−∞

dη

d̄(E)

〈
do

(
E +

η

2

)
do

(
E − η

2

)〉
E

e2π iητ d̄(E) (1)

where the density of states d(E) = ∑
n δ(E − En) is divided into a mean part d̄(E) and an

oscillatory part do(E). For systems with time-reversal symmetry, or more generally an anti-
unitary symmetry, it is expected that the form factor agrees in the semiclassical limit (h̄ → 0)

with that of the Gaussian orthogonal ensemble (GOE) of random matrix theory which has the
expansion

KGOE(τ ) = 2τ − 2τ 2 + O(τ 3) as τ → 0. (2)

The semiclassical approximation for the form factor is obtained by inserting Gutzwiller’s
trace formula for the density of states into (1) and evaluating the integral in leading order of h̄.
The result is an approximation in terms of a double sum over all periodic orbits of the classical
system

K(τ) ≈ 1

hd̄(E)

〈∑
γ,γ ′

Aγ A∗
γ ′ e

i
h̄
(Sγ −S′

γ )δ

(
T − Tγ + Tγ ′

2

)〉
E

(3)

where τ = T/(hd̄(E)) and h = 2πh̄. Furthermore, Aγ is an amplitude, generally complex-
valued, which depends on the stability and the Maslov index of the periodic orbit γ , and Sγ

and Tγ are its action and period.
The double sum in (3) runs over all possible pairings of periodic orbits. However,

most of these pairs do not contribute in the semiclassical limit. Periodic orbits which
are located in different regions in phase space are uncorrelated, and when summed over,
the contributions from different pairs cancel each other. It is expected that the relevant
semiclassical contributions come from a relatively small number of pairs of orbits which
are correlated. The key problem is then to identify the mechanism which is behind these
correlations.

The basic assumption we make is that only those periodic orbits which are almost
everywhere close to one another, or to the time reverse of the other orbit, are correlated
[7]. In order for two orbits to be different but nevertheless close they must have special forms
which can be constructed in the following way. The orbits are composed of different segments
during which one orbit follows very closely the other orbit (or its time reverse). However, the
orbits can differ in the way in which the segments are connected.

The two simplest possibilities are shown in figure 1. If orbits are composed of only one
segment, then the two ends can be connected in only one way. It then follows that the two
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Figure 1. The pairs of orbits considered here consist of different segments. In each segment one
orbit is very close to the other (or its time reverse), but they can differ in the way the segments are
connected.

neighbouring orbits are either identical or one is the time reverse of the other. Including only
these pairs in the double sum corresponds to the diagonal approximation, which yields the
correct leading order behaviour K(τ) ∼ 2τ as τ → 0 [3].

Two segments, on the other hand, can be connected in two ways, leading to orbits with
or without self-intersection at the connection point, as shown in figure 1. In order for these
pairs to exist and to be close, the crossing angle ε has to be small. Then it can be shown in a
linearized approximation that one orbit is indeed in the neighbourhood of the other.

In the following we evaluate the contributions of such pairs of orbits to the spectral form
factor. In order to avoid further assumptions and to keep the calculations simple we restrict
attention now to systems with uniformly hyperbolic dynamics; specifically we consider the
representative example of the geodesic motion on Riemann surfaces with constant negative
curvature [9]. Then the quantities Aγ , Sγ and Tγ in (3) depend only on the length of an
orbit, and Aγ is positive. We assume that the systems have no further symmetries and are
non-arithmetic so that the typical degeneracy of a length of a periodic orbit is 2. For these
systems the action difference for the pairs of orbits being considered here has been calculated
in the linearized approximation for small crossing angle ε in [7] and is given by

�S(ε) ≈ p2ε2

2mλ
(4)

where λ is the Lyapunov exponent of the system, and p and m are momentum and mass of the
particle, respectively.

The sum over these pairs of orbits can be evaluated by summing over all self-intersections
of periodic orbits with small crossing angle ε, because for every such self-intersection there
exists a neighbouring periodic orbit with action difference �S(ε). The self-intersections are
determined by introducing a function which selects them. This is done in the following way.
A self-intersection of a periodic orbit with period T divides the orbit into two loops. It can be
characterized by the crossing angle ε and the total time t along the shorter of the two loops,
t � T/2. Furthermore, we introduce an angle variable φ that specifies the direction of the
velocity, and a variable t ′ that measures the time along a periodic orbit. If at any time t ′ along
a periodic orbit q(t ′ + t) = q(t ′) and φ(t ′ + t) = φ(t ′) − π + ε, then this periodic orbit has
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a self-intersection with opening angle ε, and traversing the corresponding shorter loop takes
time t.

Correspondingly, we can express the contribution from pairs of the two-loop orbits to the
form factor as

K(2)(τ ) = 4

hd̄(E)
Re

∫ π

−π

dε

∫ T/2

0
dt

∑
γ

A2
γ e

i
h̄
�S(ε)δ(T − Tγ )

∫ T

0
dt ′ fε,t (q(t ′),p(t ′)) (5)

where the function fε,t is given by

fε,t (q(t ′),p(t ′)) = |J |δ(φ(t ′ + t) − φ(t ′) + π − ε)δ(q(t ′ + t) − q(t ′)). (6)

Here |J | = v2| sin ε|/√g is the Jacobian for the transformation from the arguments of the
three delta functions to the three integration variables, where v is the speed of the particle and
g is the determinant of the metric tensor. The three integrals give a contribution each time
that t ′ is at the beginning of a loop with time t and opening angle ε. The choice of the limits
of the integral over ε is not important since the main contribution in the semiclassical limit
h̄ → 0 comes from the asymptotic behaviour of the integrand at ε = 0. In (5) the amplitudes
and the periods of the neighbouring orbits were set to be equal since the difference does not
contribute to the leading semiclassical order.

One of the important properties of long periodic orbits is their uniform distribution on
the energy surface in phase space. It implies that the average of a given phase space function
f (q,p) along all periodic orbits of a certain period T can be replaced, in the limit T → ∞,
by an average of this function over the energy surface in phase space [10]. More accurately,
the following asymptotic relation holds as T → ∞,∑

γ

|Aγ |2δ(T − Tγ )

∫ T

0
dt ′ f (q(t ′),p(t ′)) ∼ T 2


(E)

∫
d2q d2p δ

(
E − p2

2m

)
f (q,p) (7)

where 
(E) is the volume of the energy surface in phase space.
Relation (5) is in the form in which this property of the periodic orbits can be applied.

The semiclassical limit h̄ → 0 is performed with the condition that τ/h̄ → ∞. The mean
density of states being d̄(E) ∼ 
(E)/(2πh̄)2, this implies that T → ∞ and thus the leading
order semiclassical behaviour arises from the large T behaviour. Applying the uniformity of
the periodic orbit distribution and performing the integral over the energy delta-function one
obtains

K(2)(τ ) ∼ 4p2T 2

mhd̄(E)
Re

∫ π

−π

dε e
ip2ε2

2mh̄λ sin|ε|
∫ T/2

0
dt pE(ε, t) (8)

where

pE(ε, t) =
∫

d2q0 dφ0


(E)
δ(q(t) − q0)δ(φ(t) − φ0 + π − ε) (9)

and q(t) and φ(t) are the coordinates of a particle at time t, whose initial conditions at t = 0
are specified by q0, φ0 and energy E.

The quantity pE(ε, t) has a direct classical interpretation. It is the probability density for
a particle with energy E to return after time t to its starting point with a velocity that deviates
from the initial velocity by an angle ε−π . In the same way as for the diagonal approximation,
one thus finds that the periodic orbit sum is related to a transition probability density in phase
space [11].

Our aim is to determine the leading order behaviour of (8) as h̄ → 0 which, as remarked
above, depends on the long-time behaviour of pE(ε, t). For long times pE(ε, t) approaches
one over the volume of the energy shell in phase space, because the particle is equally likely
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Figure 2. (a) A loop with opening angle ε (full line), and the local coordinate system at its starting
point. (b) Loops with the same opening angle ε whose traversal takes time t form a continuous
family and have their starting points on a curve of constant distance d from a periodic orbit.

to be found anywhere on the energy shell, i.e. pE(ε, t) ∼ 1/
(E) as t → ∞. Inserting this
into (8) and applying the method of stationary phase yields

p2τ 3
(E)

mπ2h̄2 Re
∫ ∞

0
dε exp

(
ip2ε2

2mh̄λ

)
ε = 0 (10)

and so the leading order term as h̄ → 0 vanishes. This implies that one has to take into account
the next order terms. A closer analysis of (5) shows that the important term to consider is
the next to leading order behaviour of pE(ε, t) as t → ∞. Quite surprisingly, the two-loop
contribution does not originate from the ergodic limit of the probability density pE(ε, t) but
from the approach to this limit.

We have to consider pE(ε, t) in more detail. In the following we examine its properties
for arbitrary values of ε, although we finally need only its behaviour for small ε. The quantity
pE(ε, t) is a classical transition probability density and can be expressed in terms of classical
trajectories. These trajectories are all time t loops with opening angle ε. Consider one
such loop as shown in figure 2(a). Every point in the vicinity of its starting point is the
starting point of another loop, one example being shown by the dashed line. To determine
how angle ε and time t change with the initial point we introduce a local coordinate system
(see figure 2(a)) and linearize the motion in the vicinity of the loop. The result is

v dt = 2 cos
ε

2
ds2 v dε = −2λ sin

ε

2
tanh

λt

2
ds2. (11)

One finds that angle and time change only in the s2 direction, but not in the s1 direction.
This is a particular property of the uniformly hyperbolic dynamics. After integrating
equations (11) one arrives at the following conclusion. The loops with fixed ε and t form
continuous one-parameter families. All the initial points of the loops within a family lie
on a curve which has a constant distance (denoted by d) from a periodic orbit as shown
schematically in figure 2(b). The relation between the loops and the periodic orbit is given by

cosh
λt

2
sin

|ε|
2

= cosh
λt0

2
(12)

where t0 is the period of the periodic orbit. It is a remarkable property that any loop is
uniquely related to a periodic orbit into which it can be continuously deformed through a
series of other loops. Put another way, this implies that any self-intersection of any arbitrary
classical trajectory is uniquely related to a periodic orbit, because a self-intersection is the
initial point of a loop.
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Figure 3. Numerical result of the search for loops with opening angle ε and time t. Grey scales
are proportional to the number of loops found in bins in the (ε, t)-plane.

We examined this property numerically. We chose a large number of long random
trajectories on a Riemann surface with constant negative curvature [12] and recorded all their
self-intersections. For every self-intersection a point is plotted in the (ε, t)-plane, where ε and
t are the opening angle and traversal time, respectively, of the corresponding loop. The result
is shown in figure 3. As expected, the points form continuous lines that start at the periods of
the periodic orbits (the t-values at ε = π). One can observe a logarithmic divergence of the
curves at ε = 0 which is implied by equation (12). The full line in figure 3 is an evaluation of
equation (12) for the second family of loops, and it is found to be in perfect agreement with
the numerical result.

We continue by expressing pE(ε, t) in terms of the classical trajectories. By evaluating
the integrals over the delta-functions in (9), pE(ε, t) can be written as a sum over all families
of loops with opening angle ε, which are labelled by ξ in the following. Alternatively, by
using relation (12), pE(ε, t) can also be expressed in terms of the periodic orbits labelled
by ξ0,

pE(ε, t) = 1


(E)

∑
ξ

Tξ0 cosh(λd/v) δ(t − Tξ )

sin|ε/2|(Tr Mξ − 2)

= 1


(E)

∑
ξ0

Tξ0 δ(t − Tξ )√(
Tr Mξ0 − 2

) (
Tr Mξ0 − 2 + 4 cos2 ε

2

) (13)

where Mξ and Mξ0 denote the stability matrices. We remark that a further use of equation (12)
yields

pE(ε, t) = pE(π, t0). (14)

This means that the distribution p(ε, t) is identical to the return probability density p(π, t0)

at a shifted time t0, the relation between t and t0 being given by equation (12).
Equation (13) is now applied to find the next to leading order behaviour of the time integral

over pE(ε, t) as t → ∞. We assume that from a certain time T0(ε) on we can replace pE(ε, t)

by its ergodic limit 1/
(E). This time T0(ε) is chosen to have the same ε-dependence as
the time of the families of loops (like, for example, the dashed line in figure 3). Thus T0(ε)

is related to T0(π) by an equation identical to that between t and t0 (equation (12)). For
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t < T0(ε) we replace pE(ε, t) by its exact form, equation (13). The approximation can be
made asymptotically exact by letting T0(π) → ∞ as T → ∞. We find∫ T/2

0
dt pE(ε, t) ∼

∫ T/2

T0(ε)

dt
1


(E)
+

∑
Tξ0 <T0(π)

Bξ0(ε)

= T/2 − T0(ε)


(E)
+ const + O(ε2) (15)

where here and in the following constant denotes independence of ε. In the semiclassical limit
only the asymptotic behaviour of equation (15) as ε → 0 is relevant and from the analogue
of equation (12) we find T0(ε) ∼ − 2

λ
log ε + const. This logarithmic divergence can be

interpreted as follows. For small ε the two legs of a loop need a certain minimal time in order
to separate enough to enable the loop to close. This time can be estimated by requiring that
ε exp(λt/2) is of order 1, yielding the logarithmic dependence above. Substitution into (8)
results in

K(2)(τ ) ∼ 8p2T 2

mhd̄(E)
Re

∫ ∞

0
dε e

ip2ε2

2mh̄λ
2ε(log ε + const)

λ
(E)

= 16τ 2

π
Re

∫ ∞

0
dε′ eiε′2

ε′ log(ε′). (16)

Evaluating the real part of the last integral finally yields K(2)(τ ) ∼ −2τ 2 in agreement with
the τ 2-term of the GOE form factor in (2).

In conclusion, we have shown that the off-diagonal contributions to the spectral form
factor from two-loop orbits yield a τ 2-term in agreement with random matrix theory. Its origin
can be traced to properties of loops with small opening angle ε. It is expected that higher
order terms in the expansion of K(τ) are related to multi-loop orbits, a point which is under
investigation.
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